Suppression of Early and Late Afterdepolarizations by Heterozygous Knockout of the Na+/Ca2+ Exchanger in a Murine Model.
نویسندگان
چکیده
BACKGROUND The Na(+)/Ca(2+) exchanger (NCX) has been implied to cause arrhythmias. To date, information on the role of NCX in arrhythmogenesis derived from models with increased NCX expression, hypertrophy, and heart failure. Furthermore, the exact mechanism by which NCX exerts its potentially proarrhythmic effect, ie, by promoting early afterdepolarization (EAD) or delayed afterdepolarization (DAD) or both, is unknown. METHODS AND RESULTS We investigated isolated cardiomyocytes from a murine model with heterozygous knockout of NCX (hetKO) using the patch clamp and Ca(2+) imaging techniques. Action potential duration was shorter in hetKO with IKtot not being increased. The rate of spontaneous Ca(2+) release events and the rate of DADs were unaltered; however, DADs had lower amplitude in hetKO. A DAD triggered a spontaneous action potential significantly less often in hetKO when compared with wild-type. The occurrence of EADs was also drastically reduced in hetKO. ICa activity was reduced in hetKO, an effect that was abolished in the presence of the Ca(2+) buffer BAPTA. CONCLUSIONS Genetic suppression of NCX reduces both EADs and DADs. The following molecular mechanisms apply: (1) Although the absolute number of DADs is unaffected, an impaired translation of DADs into spontaneous action potentials results from a reduced DAD amplitude. (2) EADs are reduced in absolute number of occurrence, which is presumably a consequence of shortened action potential duration because of reduced NCX activity but also reduced ICa the latter possibly being caused by a direct modulation of Ca(2+)-dependent ICa inhibition by reduced NCX activity. This is the first study to demonstrate that genetic inhibition of NCX protects against afterdepolarizations and to investigate the underlying mechanisms.
منابع مشابه
Suppression of Early and Late Afterdepolarizations by Heterozygous Knockout of the Na/Ca Exchanger in a Murine Model Running title: Bögeholz et al.; NCX knockout protects against afterdepolarizations
متن کامل
Suppression of Early and Late Afterdepolarizations by Heterozygous Knockout of the Na/Ca Exchanger in a Murine Model
متن کامل
A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation.
The action potential model presented in our accompanying article in this journal is used to investigate phenomena that involve dynamic changes of [Ca2+]i, as described below. Delayed afterdepolarizations (DADs) are induced by spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), which, in turn, activates both the Na(+)-Ca2+ exchanger (INaCa) and a nonspecific Ca(2+)-activated current (...
متن کاملA Dynamic Model of the Cardiac Ventricular Action Potential
The action potential model presented in our accompanying article in this journal is used to investigate phenomena that involve dynamic changes of [Ca2"]j, as described below. Delayed afterdepolarizations (DADs) are induced by spontaneous Ca'+ release from the sarcoplasmic reticulum (SR), which, in turn, activates both the Na+-Ca'+ exchanger (INaCa) and a nonspecific Ca'+-activated current (Ins(...
متن کاملThe Na+-Ca2+ exchanger is essential for the action of cardiac glycosides.
The widely accepted model to explain the positive inotropic effect of cardiac glycosides invokes altered Na+-Ca2+ exchange activity secondary to Na+ pump inhibition. However, proof of this model is lacking and alternative mechanisms have been proposed. We directly tested the role of the Na+-Ca2+ exchanger in the action of the glycoside ouabain using Na+-Ca2+ exchanger knockout mice. Ablation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Arrhythmia and electrophysiology
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2015